
Service Facts

Upflow/Horizontal Left/Right Gas-Fired, Single Stage Induced Draft Furnace with Variable Speed Blower Motor

Upflow, Horizontal Right/Left (For use with Natural Gas only.)

Single Stage L8V1A040U3VSAA L8V1A060U3VSAA L8V1B080U4VSAA L8V1C100U5VSAA

Note: This product complies with SJVAPCD 4905 and SCAQDMD 1111 with NOx levels below 14 ng/J.

Note: Graphics in this document are for representation only. Actual model may differ in appearance.

A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

SAFETY SECTION NON-CONDENSING FURNACES

Important: — This document pack contains a wiring diagram and service information. This is customer property and is to remain with this unit. Please return to service information pack upon completion of work.

A WARNING

FIRE OR EXPLOSION HAZARD!

Failure to follow safety warnings exactly could result in a fire or explosion causing property damage, personal injury or loss of life.

- Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.
 WHAT TO DO IF YOU SMELL GAS
- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.
- If you cannot reach your gas supplier, call the fire department.
- Installation and service must be performed by a qualified installer, service agency, or the gas supplier.

A WARNING

EXPLOSION HAZARD!

Failure to follow this Warning could result in property damage, personal injury or death. Install a gas detecting warning device in case of a gas leak. NOTE: The manufacturer of your furnace does not test any detectors and makes no representations regarding any brand or type of detector.

A WARNING

FIRE OR EXPLOSION HAZARD!

Failure to follow the safety warnings exactly could result in serious injury, death, or property damage.

Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury, or loss of life.

A WARNING

ELECTRICAL SHOCK, FIRE, OR EXPLOSION HAZARD!

Failure to follow this Warning could result in dangerous operation, property damage, severe personal injury, or death.

Improper servicing could result in dangerous operation, property damage, severe personal injury, or death.

- Before servicing, disconnect all electrical power to furnace.
- When servicing controls, label all wires prior to disconnection. Reconnect wires correctly.
- · Verify proper operation after servicing.

A WARNING

CARBON MONOXIDE POISONING HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

To ensure furnace is vented properly, do not replace factory supplied venting components with field fabricated parts. Fabricating parts can result in damaged vents and components allowing carbon monoxide to escape the venting system.

A WARNING

CARBON MONOXIDE HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

When replacing a furnace, ensure the venting system is adequate for the new furnace.

WARNING

FIRE HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Do not install the furnace directly on carpeting, tile or other combustible material other than wood flooring.

©2022 L8V1-SF-1C-EN

A WARNING

WARNING!

This product can expose you to chemicals including lead, which are known to the State of California to cause cancer and birth defects or other reproductive harm.

For more information go to www.P65Warnings.ca. gov.

A WARNING

ELECTRICAL SHOCK HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Do not bypass the door switch or panel loop by any permanent means.

A WARNING

ELECTRICAL SHOCK HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Do not touch any components other than the Menu and Option buttons on the IFC.

A WARNING

FIRE OR EXPLOSION HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Do NOT attempt to manually light the furnace.

A WARNING

CARBON MONOXIDE POISONING HAZARDI

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Follow the service and/or periodic maintenance instructions for the Furnace and venting system.

A WARNING

CARBON MONOXIDE POISONING HAZARD!

Failure to follow this Warning could result in serious personal injury or death.

Make sure that the blower door is in place and not ajar. Dangerous fumes could escape an improperly secured door.

▲ WARNING

ELECTRICAL SHOCK HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Disconnect power to the unit before removing the blower door. Allow a minimum of 10 seconds for IFC power supply to discharge to 0 volts.

▲ WARNING

SAFETY HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

These furnaces are not approved or intended for installation in manufactured (mobile) housing, trailers, or recreational vehicles.

A WARNING

EXPLOSION HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

In the event that electrical, fuel, or mechanical failures occur, shut gas supply off at the manual gas valve located on the supply gas piping coming into the furnace before turning off the electrical power to the furnace. Contact the service agency designated by your dealer.

A WARNING

EXPLOSION HAZARD!

Failure to follow this Warning could result in property damage, serious personal injury, or death.

Do not store combustible materials, gasoline, or other flammable vapors or liquids near the unit.

A WARNING

SAFETY HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Do not use semi-rigid metallic gas connectors (flexible gas lines) within the furnace cabinet.

A WARNING

INSTALLATION WARNING — HIGH VOLTAGE MOVING PARTS!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Bodily injury can result from high voltage electrical components, fast moving fans, and combustible gas. For protection from these inherent hazards during installation and servicing, the main gas valve must be turned off and the electrical supply must be disconnected. If operating checks must be performed with the unit operating, it is the technician's responsibility to recognize these hazards and proceed safely.

A WARNING

SAFETY HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Do not install the filter in the return duct directly above the furnace in horizontal applications. Install the filter remotely.

A WARNING

SAFETY HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Turn the power to the furnace off before servicing filters to avoid contact with moving parts.

A WARNING

CARBON MONOXIDE HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

Furnace venting into an unlined masonry chimney or concrete chimney is prohibited.

A WARNING

CARBON MONOXIDE HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or

The chimney liner must be thoroughly inspected to insure no cracks or other potential areas for flue gas leaks are present in the liner. Liner leaks will result in early deterioration of the chimney.

▲ WARNING

SHOCK HAZARD!

Failure to follow this Warning could result in property damage, severe personal injury, or death.

If a disconnect switch is present, it must always be locked in the open position before servicing the unit.

A WARNING

OVERHEATING AND EXPLOSION HAZARD!

Failure to follow this Warning could result in property damage, personal injury or death.

Should overheating occur, or the gas supply fail to shut off, shut off the gas valve to the unit before shutting off the electrical supply.

A CAUTION

IMPROPER VOLTAGE CONNECTION!

Failure to follow this Caution could result in property damage.

Do NOT connect the furnace line voltage to a GFCI protected circuit.

A CAUTION

CORROSION WARNING!

Failure to follow this Caution could result in property damage or personal injury.
Do not install the furnace in a corrosive or contaminated atmosphere.

A CAUTION

SHARP EDGE HAZARD!

Failure to follow this Caution could result in property damage or personal injury.

Be careful of sharp edges on equipment or any cuts made on sheet metal while installing or servicing.

A CAUTION

BACKUP WRENCH REQUIRED!

Failure to follow this Caution could result in property damage or personal injury.

Use a backup wrench on the gas valve when

Use a backup wrench on the gas valve when installing gas piping to prevent damage to the gas valve and manifold assembly.

A CAUTION

FREEZE CAUTION!

Failure to follow this Caution could result in property damage or personal injury.

If complete furnace shutdown is done during the cold weather months, provisions must be taken to prevent freeze-up of all water pipes and water receptacles.

A CAUTION

FREEZE CAUTION!

Failure to follow this Caution could result in property damage or personal injury.

Whenever your house is to be vacant, arrange to have someone inspect your house for proper temperature. This is very important during freezing weather. If for any reason your furnace should fail to operate damage could result, such as frozen water pipes.

A CAUTION

IGNITION FUNCTION!

Failure to follow this Caution may result in poor ignition characteristics.

Maintain manifold pressure in high altitude installations.

A CAUTION

WATER DAMAGE!

Failure to follow this Caution could result in property damage or personal injury.

It is recommended that an external overflow drain pan be installed in all applications over a finished ceiling to prevent property damage or personal injury from leaking condensate.

A CAUTION

HOT SURFACE!

Failure to follow this Caution could result in personal injury.

Do NOT touch igniter. It is extremely hot.

A CAUTION

FURNACE SERVICE CAUTION!

Failure to follow this Caution could result in property damage or personal injury.

Label all wires prior to disconnection when servicing controls. Verify proper operation after servicing. Wiring errors can cause improper and dangerous operation.

CAUTION

DO NOT USE AS CONSTRUCTION HEATER!

Failure to follow this Caution could result in property damage or personal injury. In order to prevent shortening its service life, the Furnace should NOT be used as a "Construction Heater".

A CAUTION

WIRING INFORMATION!

Failure to follow this Caution could result in property damage or personal injury.
The integrated furnace control is polarity sensitive. The hot leg of the 120 VAC power must be connected to the BLACK field lead.

A CAUTION

EQUIPMENT DAMAGE!

UV light exposure can cause the plastic blower material to deteriorate which could lead to Blower Housing Damage.

For units containing a plastic Blower Housing, Do NOT install third party Ultra-Violet Air Cleaners where the Blower Housing can be exposed to UV light.

For more information, visit www.trane.com and www. americanstandardair.com or contact your installing dealer. 6200 Troup Highway Tyler, TX 75707

A WARNING

CARBON MONOXIDE POISONING HAZARD!

Failure to follow the steps outlined below for each appliance connected to the venting system being placed into operation could result in carbon monoxide poisoning or death.

The following steps shall be followed for each appliance connected to the venting system being placed into operation, while all other appliances connected to the venting system are not in operation:

- Inspect the venting system for proper size and horizontal pitch as required in the National Fuel Gas Code, ANSI Z223.1/NFPA 54 and these instructions. Determine there is no blockage or restriction, leakage, corrosion or other deficiencies which could cause an unsafe condition.
- Close all doors and windows between the space in which the appliance(s) connected to the venting system are located. Also close fireplace dampers.
- Turn on clothes dryers and any appliance not connected to the venting system. Turn on any exhaust fans such as range hoods so they are operating at maximum speed. Do not operate a summer exhaust fan.
- Follow the lighting instructions. Place the appliance being inspected into operation.
 Adjust the thermostat so appliance is operating continuously.
- Test for spillage from draft hood equipped appliances at the draft hood relief opening after 5 minutes of main burner operation.
 Use the flame of a match or candle.
- If improper venting is observed during any of the above tests, the venting system must be corrected in accordance with the National Fuel Gas Code, ANSI Z221.1/NFPA 54.
- After it has been determined that each appliance connected to the venting system properly vents when tested, return all doors, windows, exhaust fans, etc. to their previous condition of use.

Product Specifications

MODEL	L8V1A040U3VSAA (a)	L8V1A060U3VSAA (a)	L8V1B080U4VSAA (a)	L8V1C100U5VSAA (a)
ТҮРЕ	Upflow / Horizontal	Upflow / Horizontal	Upflow / Horizontal	Upflow / Horizontal
RATINGS (b)				
Input BTUH	40,000	60,000	80,000	100,000
Capacity BTUH (ICS) (c)	31,700	48,100	63,000	80,200
Temp. Rise (Min Max.) °F	30 - 60	30 - 60	30 - 60	30 - 60
AFUE — Rating (c)	80	80	80	80
Return Air Temp. (Min Max.) °F	55°F - 80°F	55°F - 80°F	55°F - 80°F	55°F - 80°F
BLOWER DRIVE	DIRECT	DIRECT	DIRECT	DIRECT
Diameter — Width (In.)	11 X 8	11 X 8	11 X 8	11 X 10
No. Used	1	1	1	1
Speeds (No.)	Variable	Variable	Variable	Variable
CFM vs. in. w.g.	See Fan Performance Table	See Fan Performance Table	See Fan Performance Table	See Fan Performance Table
Motor HP	0.5	0.5	0.75	1
RPM	Variable	Variable	Variable	Variable
Volts / Ph / Hz	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60
FLA	6.4	6.4	9.6	10
COMBUSTION FAN — Type	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Drive — No. Speeds	Variable	Variable	Variable	Variable
Motor RPM	4700	4700	4700	4700
Volts/Ph/Hz	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60
FLA	1.00	1.00	1.00	1.00
Inducer Orifice	3.15	3.15	3.15	3.15
FILTER — Furnished?	No	No	No	No
Type recommended	High Velocity	High Velocity	High Velocity	High Velocity
High Vel. (NoSize-Thk.)	1 - 14 X 25 - 1 in.	1 - 14 X 25 - 1 in.	1 - 16 X 25 - 1 in.	1 - 20 X 25 - 1 in.
VENT PIPE DIAMETER — Min (in.) (d)	4 Round	4 Round	4 Round	4 Round
HEAT EXCHANGER – Type	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
Gauge (Fired)	20	20	20	20
ORIFICES — Main				
Nat. Gas Qty Drill Size	1 - 3.2 mm	1 - #23	1 - #15	1 - #11
GAS VALVE	Redundant - Two Stage			
PILOT SAFETY DEVICE - Type	120 V SiNi Igniter			
BURNERS				
Туре	Premix-ULN	Premix-ULN	Premix-ULN	Premix-ULN
Quantity	1	1	1	1
POWER CONN. — V/Ph/Hz (e)	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60	120 / 1 / 60
Ampacity (Amps)	9.2	9.2	13.2	13.7
Max. Overcurrent Protection (Amps)	15	15	15	15
PIPE CONN. SIZE (in.)	1/2	1/2	1/2	1/2

 $^{^{\}rm (a)}$ Central Furnace heating designs are certified to ANSI Z21.47 - latest edition.

⁽b) For U.S. applications, above input ratings (BTUH) are up to 2,000 feet, derate 4% per 1,000 feet for elevations above 2,000 feet above sea level.

⁽c) Based on U.S. government standard tests.

⁽d) Refer to the Installer's Guide.

⁽e) The above wiring specifications are in accordance with National Electrical Code; however, installations must comply with local codes.

Sequence of Operation

EAC and HUM Timing

- EAC relay closes approximately 5 seconds after the blower starts.
- EAC relay opens when the blower motor stops.
- HUM relay closes on a gas heating call when the blower motor starts and flame is sensed.
- HUM relay opens when flame is no longer sensed, i.e. thermostat is satisfied.

Note: The EAC and HUM terminals are dry contacts, no power output.

Gas Heating

- Note: There are two main thermal limits on this unit. Thermal Limit 1 is the primary limit for upflow applications with right side return ducting. Thermal Limit 2 is the primary limit for all other applications.
- R W contacts close on the thermostat sending 24VAC to the W low voltage terminal of the IFC. Technician should read 24VAC from W to C. The seven segment LED display will show HE I.
- 2. The IFC performs a self-check routine and then confirms that the:
 - Main thermal limits (HI LIMIT), burner box limit (BBOX LIMIT), and reverse air flow (RAF) switches are closed by sending 24VAC out of the HLO terminal and monitoring the HLI input for 24VAC.
 - b. The IFC then checks the inducer and blower motor communications.
- 3. Once step 2a and 2b are confirmed, the variable speed inducer motor is energized and performs a 30 seconds pre-purge and then shuts down.
- 4. Once the pre-purge, the igniter warm up period begins.
 - Eight seconds after the ignitor warm-up begins, the inducer is energized and ramps up to meet the Light-Off pressure.
 - b. Once the Light-Off pressure feedback is sensed and the igniter warm-up time has elapsed (~17 seconds), the 1st stage gas valve is energized.

Note: If the feedback is not correct, the IFC will time out and flash the proper fault

 The burner system will ignite, providing current to the flame sensor. Proof of flame must be established within 4 seconds or a retry will occur.

Note: Typical flame current ranges from 0.75 – 3.0μa.

- Once flame sense has been established, the igniter is de-energized, the blower on timer begins and the inducer ramps to the "Pre-Run" speed. During this transition, the combustion pressure increases until the Pre-Run pressure is sensed.
- 7. Once the Pre-Run pressure feedback is sensed, the IFC will energize the 2nd stage of the gas valve.
- 8. After the blower on timer has completed, the indoor blower will run at the selected gas heating speed.
- 9. The seven segment LED will alternately read:
 - HE I = Gas heating, Stage 1
 - ArF = Airflow
 - IBD = 600 calculated cfm (value shown x 10) (example value)
- 10. When the temperature raises enough to satisfy the thermostat setting, contacts R-W will open.
- 11. The gas valve relay will open, closing the gas valve. The inducer continues to run for ~5 seconds to remove any combustion by-products from inside the furnace.
- 12. The indoor blower continues to run to remove heat from the heat exchangers. The Heat Off Delay is field adjustable. The seven segment LED will return to 1 dL (Idle) assuming there is no other demand from the thermostat, i.e., continuous fan call.

Single Stage Cooling

Note: Factory supplied Y1-O jumper must remain in place for proper seven segment LED readout. If removed, seven segment LED will read HP 1

- R-Y1-G contacts on the thermostat close sending 24VAC to the Y1 and G low voltage terminals on the IFC. Technician should read 24VAC between Y1-B/C and between G-B/C.
- 2. 24VAC is sent to the OD unit via thermostat wiring.
- The indoor blower ramps to the cooling airflow.
 The seven segment LED for <u>example</u> will alternately read:
 - EL I = Cooling, Stage 1
 - ArF = Airflow
 - DBD = 800 calculated cfm (value shown x 10)
- 4. When the temperature is lowered enough to satisfy the thermostat setting, contacts R-Y-G will open.
- 5. The OD unit shuts off and the indoor blower shuts off, unless a blower off delay has been enabled in the IFC setup menu options. The seven segment LED will read 1 dL = Idle, no thermostat demand.

Two Stage Cooling

- See sequence of operation for Single stage cooling operation above (steps 1-3).
- R-Y2 contact on the thermostat close sending 24VAC to Y2 low voltage terminal on the IFC. Technician should read 24VAC between Y2 and B/C.
- 3. 24VAC is sent to the OD unit via thermostat wiring.
- 4. The indoor airflow ramps to 2nd stage airflow. The seven segment LED for example will read:
 - □ L2 = Cooling, Stage 2
 - ArF = Airflow
 - IBD = 1600 calculated cfm (value shown x 10)
- When the temperature is lowered enough to satisfy the thermostat setting, contacts R-Y1-Y2-G will open.

The OD unit shuts off and the indoor blower shuts off, unless a blower off delay has been enabled in the IFC setup menu options. The seven segment LED will read *I dL* = Idle, no thermostat demand.

Single Stage Heat Pump

Note: Factory supplied Y1-O jumper must be removed for proper seven segment LED readout and defrost operation.

- R-Y1-G contacts on the thermostat close sending 24VAC to the Y1 and G low voltage terminals on the IFC. Technician should read 24VAC between Y1-B/C and between G-B/C.
- 2. 24VAC is sent to the OD unit via thermostat wiring.
- The indoor blower ramps to the HP heating airflow.
 The seven segment LED for <u>example</u> will alternately read:

- HP I = Heat Pump Heating, Stage 1
- ArF = Airflow
- DBD = 800 calculated cfm (value shown x 10)
- 4. When the temperature is raised enough to satisfy the thermostat setting, contacts R-Y-G will open.
- 5. The OD unit shuts off and the indoor blower shuts off, unless a blower off delay has been enabled in the IFC setup menu options. The seven segment LED will read 1 dL = Idle, no thermostat demand.

Two Stage Heat Pump

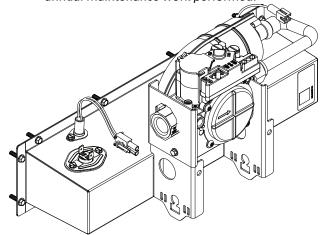
- See sequence of operation for single stage heat pump operation above (steps 1-3)
- R-Y2 contact on the thermostat close sending 24VAC to Y2 low voltage terminal on the IFC. Technician should read 24VAC between Y2 and B/C.
- 3. 24VAC is sent to the OD unit via thermostat wiring.
- 4. The indoor airflow ramps to 2nd stage airflow. The seven segment LED for example will read:
- HP2 = Heat Pump Heating, Stage 2
- RrF = Airflow
- IED = 1600 calculated cfm (value shown x 10)
- When the temperature is raised enough to satisfy the thermostat setting, contacts R-Y1-Y2-G will open.
- The OD unit shuts off and the indoor blower shuts off, unless a blower off delay has been enabled in the IFC setup menu options. The seven segment LED will read 1 dL = Idle, no thermostat demand.

Periodic Servicing Requirements

- 1. GENERAL INSPECTION Examine the furnace installation annually for the following items:
 - a. All flue product carrying areas external to the Furnace (i.e. chimney, vent connector) are clear and free of obstruction. A vent screen in the end of the Vent (flue) Pipe must be inspected for blockage annually, if applicable.
 - The vent connector is in place, slopes upward and is physically sound without holes or excessive corrosion.
 - c. The return air duct connection(s) is physically sound, is sealed to the Furnace and terminates outside the space containing the Furnace.
 - d. The physical support of the Furnace should be sound without sagging, cracks, gaps, etc., around the base so as to provide a seal between the support and the base.
- 2. FILTERS Filters should be cleaned or replaced (with high velocity filters only), monthly and more frequently during high use times of the year such as midsummer or midwinter.
- 3. BLOWERS The Blower size and speed determine the air volume delivered by the Furnace. The Blower motor bearings are factory lubricated and under normal operating conditions do not require servicing. Annual cleaning of the Blower wheel and housing is recommended for maximum air output, and this must be performed only by a qualified servicer or service agency.
- 4. IGNITER This unit has a special hot surface direct ignition device that automatically lights the burners. Please note that it is very fragile and should be handled with care. ! CAUTION Do NOT touch igniter. It is extremely hot.
- 5. HEAT EXCHANGER/ FLUE PIPE These items must be inspected for signs of corrosion, and/ or deterioration at the beginning of each heating season by a qualified service technician and cleaned annually for best operation. To clean flue gas passages, follow recommendations below:
 - a. Turn off gas and electric power supply.
 - Inspect flue pipe exterior for cracks, leaks, holes or leaky joints.
 - c. Remove door from Furnace.
 - d. Inspect induced draft Blower connections to the flue pipe connection.
 - e. Use a mirror and flashlight to inspect interior of Heat Exchanger, be careful not to damage the Igniter, Flame Sensor or other components.
 - f. If any corrosion is present, the Heat Exchanger should be cleaned by a qualified service technician.
 - g. After inspection is complete replace burner and Furnace door.

- h. Restore gas supply. Check for leaks using a soap solution. Restore electrical supply. Check unit for normal operation.
- COOLING COIL CONDENSATE DRAIN If a cooling coil is installed with the Furnace, condensate drains should be checked and cleaned periodically to assure that condensate can drain freely from coil to drain. If condensate cannot drain freely water damage could occur. (See Condensate Drain in Installer's Guide.)

General Maintenance and Cleaning


Heat Exchanger

Note: If the heat exchanger gets a heavy accumulation of soot or carbon, it should be replaced rather than trying to clean. A heavy build-up of soot and/or carbon indicates that a problem exists which needs to be corrected, such as improper adjustment of gas valve outlet pressure, insufficient or poor quality combustion air, incorrect size or damaged orifice(s), improper gas, or a restricted heat exchanger. Action must be taken to correct the problem.

Burner Assembly

Important: Proper use of Personal Protective
Equipment (PPE) must be followed,
including safety glasses, gloves, and dust
mask when removing and reinstalling the
burner assembly.

Note: Disassembly of the burner assembly during annual maintenance should not be required in most applications but may vary depending on the location and application of the furnace. Inspection of all components, wiring, and verifying proper operation should be part of the annual maintenance work performed.

Maintenance Instructions

The following steps should be performed only by a qualified service technician:

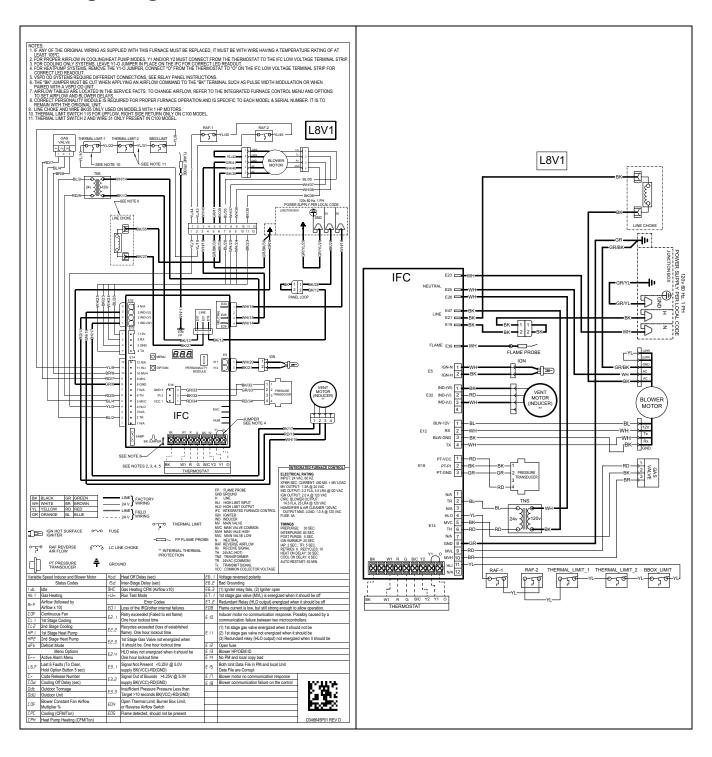
- 1. Turn OFF gas and electrical power to furnace.
- 2. Remove door panel.
- 3. Visually inspect the overall condition of the furnace components: looking for signs of corrosion, excessive wear, loose, or frayed wiring, and overall cleanliness of the furnace.
- 4. The venting system should be checked for proper pitch, loose connections, and signs of corrosion.
- 5. Disconnect the wire to the flame sensor and remove the ½" retaining screw. Remove the sensor and clean if necessary.

Note: Cleaning the sensor with steel wool is the approved method. Use of sand paper or similar materials will eventually result in the glass deposits of the sandpaper becoming molten and insulating the small current flow and loss of operation.

 Disconnect the wiring to the ignitor. With the ignitor still in place, measure the resistance of the ignitor. Resistance should be between 37-70 ohms.

Cleaning Instructions

The following steps should be performed only by a qualified service technician:


- 1. Turn OFF gas and electrical power to furnace.
- 2. Remove door panel.
- Disconnect wires to the following components after identifying and marking the wires. Taking pictures with a smart phone is also a good aid in when it's time for re-connection:
 - a. Burner box limit switch
 - b. Primary limit switch
 - c. Gas valve
 - d. Hot surface igniter

- e. Flame sensor
- f. Pressure transducer
- 4. With the use of a back-up wrench on the gas valve, disconnect the gas supply line from gas valve.
- Remove screws that attach the burner assembly to the vestibule panel. The gas valve and J-tube do not need to be removed from burner box.

Note: Be careful when removing burner assembly to avoid breaking igniter.

- 6. Remove burner box insulation and discard. Re-use of the burner box insulation is not recommended.
- Remove insulation sleeves from each tube inlet. Inspect each sleeve for signs of damage or overheating. Replace as needed, as a set.
- 8. Using vacuum cleaner with soft brush attachment, clean burner assembly. Regulated compressed air can be used to aid in cleaning.
- 9. Clean flame sensor with fine steel wool.
- Inspect ignitor for visible signs of damage or overheating. Measure resistance of the ignitor with a VOM. Resistance should be between 37-70 ohms. Replace if needed.
- 11. Reinstall the burner box insulation assembly.
- 12. Reinstall burner assembly.
- 13. Reconnect wires to the following components:
 - a. Burner box limit switch
 - b. Primary limit switch
 - c. Gas valve
 - d. Hot surface igniter
 - e. Flame sensor
 - f. Pressure transducer
- 14. Re-connect gas supply and check for leaks.
- 15. Set thermostat above room temperature and check furnace for proper operation.
- 16. Verify blower airflow and temperature rise is within the specified range stated on the nameplate.

Wiring Diagrams

Airflow Tables

Table 1. L8V1A040U3VS Heating Airflow

				Heating Capacity = 31,700								
Heating	Airflow	Target		External Static Pressure								
пеациу	Setting	Airflow		0.1	0.3	0.5	0.7	0.9				
			CFM	594	614	634	653	673				
	Low	550	Temp. Rise	50	48	47	45	44				
			Watts	21	66	112	158	204				
		CFM 668 um Low (a) 610 Temp. Rise 44	CFM	668	684	699	714	730				
	Medium Low (a)		44	43	42	42	41					
Heating			Watts	28	76	124	172	220				
rieating			CFM	705	715	725	736	746				
	Medium	630	Temp. Rise	42	41	41	40	40				
		Watts	31	80	128	177	225					
			CFM	792	797	801	806	810				
	High	700	Temp. Rise	37	37	37	37	37				
			Watts	43	93	143	194	244				

⁽a) Factory Setting

Table 2. L8V1A040U3VS Cooling Airflow

Outdoor	Airflow Setting		EXTERNAL STATIC PRESSURE (IN. W. C.)						
Tonnage - ODT	(CFM/Ton)		0.1	0.3	0.5	0.7	0.9		
	450	CFM	687	682	677	673	668		
	450	WATTS	58	99	143	190	239		
	420	CFM	642	638	635	632	628		
	420	WATTS	51	90	133	178	225		
	370	CFM	612	609	607	604	602		
		WATTS	46	84	126	170	217		
		CFM	566	566	565	564	563		
1 5		WATTS	40	76	116	159	205		
1.5		CFM	536	536	536	536	536		
	350	WATTS	36	71	110	153	198		
	220	CFM	506	507	508	509	510		
	330	WATTS	33	67	105	146	191		
		CFM	476	478	480	482	484		
		WATTS	29	62	99	140	184		
	200	CFM	446	449	452	455	458		
	290	WATTS	26	58	94	134	178		

Table 2. L8V1A040U3VS Cooling Airflow (continued)

		CFM	913	901	889	877	86
	450	WATTS	111	161	213	267	32
		CFM	853	843	833	822	81
	420	WATTS	92	139	189	242	29
		CFM	813	804	795	786	77
	400	WATTS	83	129	177	228	28
		CFM	752	746	739	732	72
	370	WATTS	70	114	160	209	25
2.0		CFM	712	707	701	695	69
	350	WATTS	71	113	158	205	25
		CFM	672	668	663	659	65
	330	WATTS	56	96	140	186	23
		CFM	632	629	626	623	62
	310	WATTS	49	88	130	175	22
		CFM	592	590	588	586	58
	290	WATTS	43	81	122	165	21
		CFM	1140	1120	1101	1081	106
	450	WATTS	177	236	297	358	42
		CFM	1064	1047	1030	1013	99
	420	WATTS	152	207	264	324	38
		CFM	1014	998	983	968	95
	400	WATTS	136	189	245	303	36
		CFM	938	925	913	900	88
	370	WATTS	114	164	218	273	32
2.5		CFM	888	877	866	854	84
	350	WATTS	100	149	200	254	30
		CFM	838	828	818	809	79
	330	WATTS	88	135	185	236	29
		CFM	788	780	771	763	75
	310	WATTS	777	122	170	220	27
		CFM	737	731		718	71
	290				724		25
		WATTS CFM	1366	110 1339	156	204 1285	125
	450	WATTS	1366 190	248	1312 333	409	48
		CFM	1275	1251	1228	1204	118
	420	WATTS				427	49
			231 1215	295	361	1149	112
	400	CFM		1193	1171		
		WATTS	206	267	331	396	46
	370	CFM	1124	1105	1087	1068	104
3.0 (a)		WATTS	172	230	290	352	41
	350	CFM	1064	1047	1030	1013	99
		WATTS	152	207	264	324	38
	330	CFM	1004	989	974	959	94
		WATTS	133	186	241	298	35
	310	CFM	943	930	917	904	89
		WATTS	115	166	219	275	33
	290	CFM	883	872	861	850	83

(a) Factory Setting

Table 3. L8V1A060U3VS Heating Airflow

				Heating Capacity = 48,100								
Heating	Airflow				External Static Pressure							
пеацііў	Setting			0.1	0.3	0.5	0.7	0.9				
			CFM	857	850	843	836	829				
	Low	830	Temp. Rise	51	52	52	53	54				
			Watts	51	102	153	204	255				
			CFM	993	981	970	958	946				
	Medium Low	960	Temp. Rise	44	45	46	47	47				
Heating			Watts	76	131	186	241	296				
rieating			CFM	1014	1010	1005	1001	996				
	Medium (a)	990	Temp. Rise	43	44	44	44	45				
		Watts	82	139	197	255	829 54 255 946 47 296 996					
			CFM	1163	1153	1143	1133	1124				
	High	1130	Temp. Rise	38	38	39	39	40				
			Watts	120	182	244	307	369				

⁽a) Factory Setting

Table 4. L8V1A060U3VS Cooling Airflow

Outdoor	Airflow Setting		E	XTERNAL ST	ATIC PRESSI	JRE (IN. W. C	.)
Tonnage - ODT	(CFM/Ton)		0.1	0.3	0.5	0.7	0.9
	450	CFM	718	706	694	682	670
	450	WATTS	56	96	140	185	232
	420	CFM	673	661	649	637	625
	420	WATTS	49	87	129	173	219
	400	CFM	642	630	618	606	594
	400	WATTS	44	82	122	165	210
	270	CFM	596	584	572	560	548
4.5	370	WATTS	38	74	113	154	198
1.5	250	CFM	565	553	541	529	517
	350	WATTS	35	69	107	147	190
	220	CFM	534	522	510	498	485
	330	WATTS	31	65	101	141	183
	240	CFM	502	490	478	466	454
	310	WATTS	28	60	96	135	176
	200	CFM	470	458	446	434	422
	290	WATTS	25	56	91	128	169
	450	CFM	938	926	914	902	890
	450	WATTS	103	153	204	258	313
	120	CFM	881	868	856	844	832
	420	WATTS	88	136	185	237	289
	100	CFM	842	830	818	806	794
	400	WATTS	80	125	173	223	274
	270	CFM	783	771	759	747	735
2.0	370	WATTS	67	111	156	204	253
2.0	250	CFM	743	731	719	707	695
	350	WATTS	61	102	146	192	240
	220	CFM	703	691	679	667	655
	330	WATTS	53	93	136	181	228
	210	CFM	663	651	638	626	614
	310	WATTS	47	86	127	170	216
	200	CFM	622	610	598	586	574
	290	WATTS	41	78	118	160	205

Table 4. L8V1A060U3VS Cooling Airflow (continued)

		CFM	1146	1134	1122	1110	109
	450	WATTS	172	230	291	352	410
	420	CFM	1078	1066	1054	1042	103
	420	WATTS	146	202	259	318	37
	400	CFM	1032	1020	1008	996	98
	400	WATTS	131	184	240	297	35
	270	CFM	962	950	938	926	91
2.5	370	WATTS	110	160	213	267	32
2.5	250	CFM	914	902	890	878	86
	350	WATTS	97	145	196	249	30
	220	CFM	866	854	842	830	81
	330	WATTS	85	132	180	231	28
	310	CFM	817	805	793	781	76
	310	WATTS	74	119	166	215	26
	290	CFM	768	756	744	732	72
	290	WATTS	65	107	152	199	24
	450	CFM	1342	1330	1318	1306	129
		WATTS	266	333	402	472	54
	420	CFM	1265	1253	1241	1229	121
	420	WATTS	225	289	354	421	48
	400	CFM	1213	1201	1188	1176	116
	400	WATTS	200	262	325	389	45
	370	CFM	1132	1120	1108	1096	108
3.0 ^(a)	3/0	WATTS	167	224	284	345	40
J.U (-/	350	CFM	1078	1066	1054	1042	103
	220	WATTS	146	202	259	318	37
33	330	CFM	1023	1011	999	986	97
	330	WATTS	128	181	236	293	35
	310	CFM	966	954	942	930	91
	210	WATTS	111	162	214	269	32
	290	CFM	909	897	885	873	86
	250	WATTS	96	144	195	247	30

⁽a) Factory Setting

Table 5. L8V1B080U4VS Heating Airflow

					Heati	ng Capacity = 6	3,000				
Heating	Airflow	Target			External Static Pressure						
пеацііў	Setting	Airflow		0.1	0.3	0.5	0.7	0.9			
			CFM	1253	1243	1234	1224	1214			
	Low	1180	Temp. Rise	47	48	48	49	49			
			Watts	124	184	244	305	365			
	Medium Low		CFM	1313	1298	1283	1268	1253			
		1250	Temp. Rise	45	46	46	47	47			
Hosting			Watts	142	204	266	328	390			
Heating			CFM	1438	1414	1390	1366	1342			
	Medium (a)	1350	Temp. Rise	42	42	43	43	44			
		Watts	184	249	314	379	1214 49 365 1253 47 390 1342				
			CFM	1454	1442	1429	1417	1404			
	High	1400	Temp. Rise	41	42	42	42	42			
			Watts	194	263	332	401	470			

⁽a) Factory Setting

Table 6. L8V1B080U4VS Cooling Airflow

Outdoor	Airflow Setting		E	XTERNAL ST	ATIC PRESSU	JRE (IN. W. C	.)
Tonnage - ODT	(CFM/Ton)		0.1	0.3	0.5	0.7	0.9
	450	CFM	911	905	893	881	878
	430	WATTS	90	140	191	241	292
	420	CFM	853	849	833	823	816
	420	WATTS	77	125	172	221	269
	400	CFM	814	811	795	781	774
	400	WATTS	69	115	161	208	25!
	370	CFM	757	755	738	722	71
2.0	370	WATTS	58	102	145	190	23
2.0	350	CFM	719	719	700	683	67
	330	WATTS	52	94	136	179	223
	330	CFM	682	681	662	644	63:
	330	WATTS	46	86	127	169	212
	210	CFM	645	645	625	603	588
	310	WATTS	41	79	118	159	20:
	200	CFM	608	609	587	565	548
	290	WATTS	36	72	110	150	19:
	450	CFM	1130	1121	1113	1110	111
	450	WATTS	152	214	274	334	393
	420	CFM	1058	1049	1039	1034	103
	420	WATTS	129	187	244	301	350
	400	CFM	1008	1000	990	981	98
2.5	400	WATTS	115	170	225	279	333
	270	CFM	936	927	917	907	90
	370	WATTS	95	147	199	250	30
	0=0	CFM	887	882	868	859	853
	350	WATTS	84	134	183	233	282
	220	CFM	838	835	819	806	802
	330	WATTS	74	121	168	216	264
	240	CFM	790	787	771	758	750
	310	WATTS	64	109	154	200	247
	200	CFM	743	742	724	708	698
	290	WATTS	56	99	142	186	23:
	450	CFM	1349	1340	1337	1339	135
	450	WATTS	241	313	384	453	523
	422	CFM	1261	1253	1246	1249	126
	420	WATTS	202	270	336	402	467
	400	CFM	1203	1195	1187	1186	119
	400	WATTS	179	244	308	370	434
	270	CFM	1116	1106	1097	1095	110
2.0	370	WATTS	147	208	268	327	380
3.0	252	CFM	1058	1049	1039	1034	103
	350	WATTS	129	187	244	301	350
	222	CFM	998	991	980	972	972
	330	WATTS	112	167	221	275	329
	2.2	CFM	940	933	921	911	91
	310	WATTS	97	149	201	252	304
		CFM	882	877	863	852	848
	290	WATTS	83	132	182	231	280

Table 6. L8V1B080U4VS Cooling Airflow (continued)

		CFM	1565	1559	1562	1575	159
	450	WATTS	360	442	523	604	68
		CFM	1465	1457	1455	1463	148
	420	WATTS	300	378	454	528	60
		CFM	1397	1388	1384	1392	140
	400	WATTS	264	339	411	484	55
	270	CFM	1295	1285	1280	1283	129
2.5	370	WATTS	216	286	354	421	48
3.5	250	CFM	1227	1219	1213	1210	122
	350	WATTS	188	254	320	383	44
	220	CFM	1159	1151	1142	1139	114
	330	WATTS	162	225	287	348	40
	210	CFM	1091	1083	1073	1068	107
	310	WATTS	139	199	258	315	37
	290	CFM	1023	1015	1004	998	100
	290	WATTS	119	175	230	286	34
	450	CFM	1779	1779	1788	1807	183
		WATTS	513	607	698	788	87
	420	CFM	1665	1661	1666	1683	17:
	420	WATTS	427	514	600	685	76
	400	CFM	1589	1584	1587	1600	162
	400	WATTS	375	459	541	622	70
	370	CFM	1474	1465	1466	1475	149
4.0 (a)	3/0	WATTS	305	383	460	536	61
4.0 (%)	350	CFM	1397	1388	1384	1392	140
	330	WATTS	264	339	411	484	55
	330	CFM	1319	1310	1304	1308	132
	330	WATTS	227	298	367	435	50
	310	CFM	1241	1232	1227	1226	123
	310	WATTS	194	261	327	391	45
	290	CFM	1164	1155	1147	1144	115
	290	WATTS	164	227	289	350	41

⁽a) Factory Setting

Table 7. L8V1C100U5VS Heating Airflow

					Heating Capacity = 80,200								
Heating	Airflow	Target			Exte	rnal Static Pressure							
пеаціпу	Setting	Airflow		0.1	0.3	0.5	0.7	0.9					
			CFM	1608	1624	1640	1656	1672					
	Low (a)	1500	Temp. Rise	46	46	46	45	45					
			Watts	231	301	371	440	510					
	Medium Low		CFM	1685	1701	1716	1732	1747					
		1600	Temp. Rise	44	44	44	43	43					
Heating			Watts	264	343	422	500	579					
rieating			CFM	2014	2021	2027	2033	2039					
	Medium	1900	Temp. Rise	37	37	37	37	37					
			Watts	435	524	613	703	45 510 1747 43 579 2039 37 792 2082					
			CFM	2086	2085	2084	2083	2082					
	High	2000	Temp. Rise	36	36	36	36	36					
			Watts	510	606	701	796	892					

⁽a) Factory Setting

Table 8. L8V1C100U5VS Cooling Airflow

Outdoor	Airflow Setting		E	XTERNAL ST	ATIC PRESSU	JRE (IN. W. C	.)
Tonnage - ODT	(CFM/Ton)		0.1	0.3	0.5	0.7	0.9
	450	CFM	1107	1105	1101	1094	108
	450	WATTS	105	152	205	261	321
	420	CFM	1033	1029	1023	1015	100
	420	WATTS	88	134	184	239	297
	400	CFM	983	978	971	961	950
	400	WATTS	78	122	172	225	282
	370	CFM	909	901	892	880	866
2.5	3/0	WATTS	65	107	155	206	262
2.5	350	CFM	860	850	838	824	808
	330	WATTS	57	98	144	195	250
	220	CFM	810	797	783	767	750
	330	WATTS	50	90	135	185	238
	240	CFM	760	744	728	710	693
	310	WATTS	44	82	126	175	228
	200	CFM	710	691	671	651	633
	290	WATTS	38	75	118	167	220
	450	CFM	1328	1328	1327	1324	131
	450	WATTS	167	221	280	342	407
		CFM	1240	1239	1237	1233	122
	420	WATTS	140	191	247	307	370
3.0		CFM	1180	1180	1177	1172	116
	400	WATTS	123	173	227	286	347
		CFM	1092	1090	1085	1079	106
	370	WATTS	101	148	201	257	316
		CFM	1033	1029	1023	1015	100
	350	WATTS	88	134	184	239	297
		CFM	973	968	961	951	938
	330	WATTS	76	120	170	223	279
		CFM	914	907	897	885	871
	310	WATTS	66	108	156	208	263
		CFM	855	844	832	818	803
	290	WATTS	56	97	143	194	248
		CFM	1550	1549	1548	1545	154
	450	WATTS	253	312	377	446	517
		CFM	1447	1446	1445	1442	143
	420	WATTS	210	267	328	394	462
		CFM	1378	1377	1377	1374	136
	400	WATTS	184	239	299	363	429
ł		CFM	1274	1274	1272	1269	126
	370	WATTS	150	202	259	320	384
3.5		CFM	1205	1204	1202	1198	119
	350	WATTS	130	180	235	294	356
		CFM	1136	1135	1131	1126	111
	330	WATTS	112	160	214	271	33:
ŀ		CFM	1067	1064	1060	1052	104
	310	WATTS	95	142	194	249	307
•		CFM	998	994	987	978	966
	290	WATTS	81	126	176	229	286

Table 8. L8V1C100U5VS Cooling Airflow (continued)

		CFM	1773	1769	1765	1760	175
	450	WATTS	364	430	501	576	65
		CFM	1654	1652	1649	1646	164
	420	WATTS	301	364	431	503	57
		CFM	1575	1574	1572	1569	156
	400	WATTS	264	324	390	459	53
		CFM	1456	1456	1455	1452	144
	370	WATTS	214	271	333	399	46
4.0		CFM	1378	1377	1377	1374	136
	350	WATTS	184	239	299	363	42
		CFM	1299	1299	1297	1294	128
	330	WATTS	158	210	268	330	39
		CFM	1220	1219	1217	1213	120
	310	WATTS	134	185	240	300	36
		CFM	1141	1140	1137	1131	112
	290	WATTS	113	161	215	272	33
		CFM	1996	1988	1980	1971	196
	450	WATTS	506	578	655	736	81
		CFM	1862	1856	1851	1845	183
	420	WATTS	417	486	559	636	71
		CFM	1773	1769	1765	1760	17:
	400	WATTS	364	430	501	576	65
		CFM	1639	1637	1635	1631	162
	370	WATTS	294	356	423	494	56
4.5		CFM	1550	1549	1548	1545	154
	350	WATTS	253	312	377	446	51
		CFM	1461	1461	1460	1457	14!
	330	WATTS	216	273	335	401	47
		CFM	1373	1373	1372	1369	136
	310	WATTS	182	237	297	361	42
		CFM	1284	1284	1282	1279	12
	290	WATTS	153	205	263	324	38
		CFM	2220	2206	2194	2181	216
	450	WATTS	680	759	842	929	10
		CFM	2071	2061	2051	2041	203
	420	WATTS	560	635	714	796	88
		CFM	1971	1963	1956	1948	193
	400	WATTS	488	560	636	716	79
		CFM	1823	1817	1813	1807	180
	370	WATTS	393	461	533	608	68
5.0 (a)		CFM	1723	1720	1717	1712	170
	350 (a)	WATTS	337	402	471	544	62
		CFM	1624	1622	1620	1617	16:
	330	WATTS	287	349	415	486	55
		CFM	1526	1525	1523	1520	15:
	310	WATTS	242	301	365	433	50
		CFM	1427	1427	1426	1423	14:
	290	WATTS	202	258	320	385	45

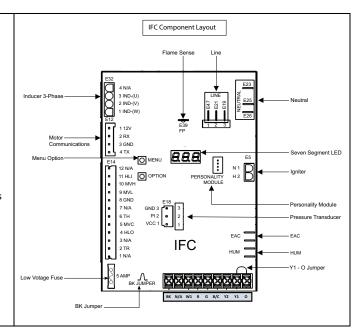
(a) Factory Setting

Integrated Furnace Control Display Codes

Inducer with ECM Blower Motor			
l dL	Idle		
HEI	Gas Heating		
ArF	Calculated Airflow (Followed by Airflow times 10)		
COF	Continuous Fan		
ELI	First Stage Cooling		
CT5	Second Stage Cooling		
ны	First Stage Heat Pump		
HP2	Second Stage Heat Pump		
dFt	Defrost Mode		
	Menu Options		
Err	Active Alarm Menu		
L 6F	Last 6 Faults (To clear — Hold Option button down for 5 seconds)		
[r	Code Release Number		
COA	Cooling Off Delay (Seconds)		
DdE	Outdoor Tonnage		
DdU	Outdoor Unit		
COF	Blower Constant Fan Airflow Multiplier (Percentage)		
СРС	Cooling (CFM/Ton)		
СРН	Heat Pump Heating (CFM/Ton)		
Hod	Heat Off Delay (Seconds)		
158	Inter-Stage Delay (Seconds)		
9нС	Gas Heating CFM (Airflow times 10)		
rUn	Run Test Mode		

Table 9. Fault Code Recovery

Fault Code Recovery


- To view the last 6 faults, press the "Menu" key until the "Last 6 Faults" (L6F) menu appears.
- 2. Enter the menu by pressing the "Option" key.
- 3. The last 6 faults can be viewed.

Clearing the Last 6 Faults

- To clear the last 6 faults, press the "Menu" key until the "Last 6 Faults" (L6F) menu appears.
- 2. Enter the menu by pressing the "Option" key.
- 3. Hold the "Option" key for at least 5 seconds.
- 4. Release and a set of 3 dashes with be seen 3 times. This confirms the faults have been cleared.

Resetting Factory Defaults

- 1. Display must be in Idle Mode.
- 2. Push the "Menu" and "Option" buttons at the same time for 15 seconds then release.
- The 7 segment will flash "Fd" 3 times. This confirms the unit has been reset to the factory defaults.

Integrated Furnace Control Menu

3T[3T], 1.5T, 2T, 2.5T 3T[3T], 1.5T, 2T, 2.5T 4T[4T], 2T, 2.5T, 3T, 3.5T 5T[5T], 2.5T, 3T, 3.5T, 4T, 4.5T When applied with zoning or a VSPD outdoor unit, the CFM/Ton must be set to 400 and ODT must match the OD tonnage. CFM per Ton selections range from 290 – 450 ODT Options []= Default To change any factory default value, first remove and "call" from the furnace and allow any fan off delays to finish. (I dL should be seen on the display.) Scroll to the selected Menu item by momentarily depressing the "MINUL" key and then depress the "OPTION" key to the desired setting. Then momentarily depress the "MENU" key again to save the change. Note: Do not adjust COF above 50%. L8V1A060U3VS L8V1B080U4VS L8V1C100U5VS L8V1A040U3VS Important: SETTING UP YOUR SYSTEM: 2-5 К 8 品 <u>Example</u> Open Limit Switch Error EDH 2 stage 2 compres 7-7 밁 88 Control System Menu 2-0 8 무 90 180 Example 1* Stage Pressure Switch Error Example 1** Stage Pressure Switch Error E3. 1 E3_1 Example 2 stage 1 compressor DLE. --DLE. 5 88 88 泛 呈 A-F 2nd Stage Pressure Switch Error Example 2nd Stage Pressure Switch Error Example 50% Cooling Airflow Example Software Version # E3_4 E3_4 Example 1 stage 1 compre 120 Example Seconds Example Example - 出 <u>Example</u> seconds 3-0 _ 900 8 350 80 23 EPH Heating CFM 15d Inter-Stage Delay Control Release #/ Continuous Fan Cooling Off Delay Outdoor Tonnage Err Active Errors Cooling CFM per Ton Heat Off Delay Last 6 Faults OD Unit Type Status Menu 學 B 当 님

CLEARING THE LAST6 FAULTS.

To clear the stored faults, scroll to the last 6 faults menu (LEE), enter the menu by scrolling to the right and hold the "OPTION" key for at least 5 seconds. Release and a set of 3 dashes will be seen 3 times. This confirms the faults have been cleared.

Gas heating CFM can be adjusted while the unit is operating in gas heat mode to enable the technician to quickly adjust to the manufacturer's suggested heat rise across the heat exchanger.

Multiply the value shown by 10 for actual airflow. Gas Heating CFM []=Default L8V1A040U3VS Mode

061[061], 063, 070, 055 099[099], 113, 083, 096 135[135], 140, 118, 125 150[150], 160, 190, 200 L8V1A060U3VS L8V1B080U4VS L8V1C100U5VS

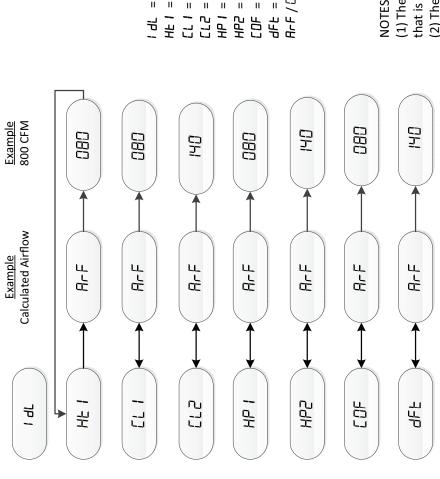
960

683

<u>...</u>

93

Gas Heating CFM


붊

Example on stage Heating CFM

See Run Test Menu

Run Test Mode

Examples of System Status

= Idle, no demand for cooling, heating, or fan = Demand for 1^{st} stage gas heat

LL I = Demand for 1st stage cooling

= Demand for 2nd stage cooling

HPI = Demand for 1st stage heat pump

 $HPZ = Demand for 2^{nd} stage heat pump$

LDF = Demand for continuous fan

= Demand for outdoor unit defrost, furnace running in gas heat mode Rr F / 김용집 Calculated airflow is 800 CFM.

Airflow display is rounded down to the nearest 10 cfm

- (1) The menu status displayed is solely dependent on the input of 24VAC that is applied to the low voltage terminal strip.
- 2) The status will alternate between the system mode and the airflow request every 2 seconds.
- 3) If an error occurs, an E*.* will alternately flash with the system mode and airflow request. See first example
- 4) Multiply the value shown by 10 for actual airflow

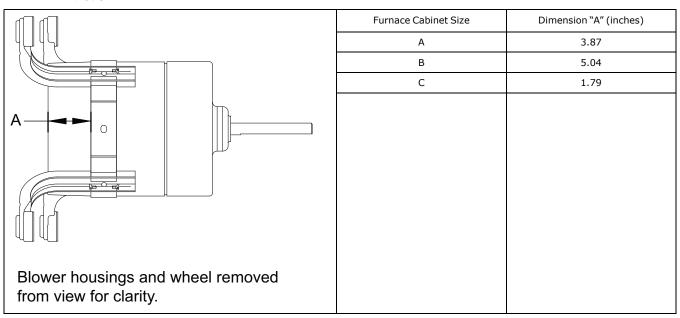
Note: During run test mode, depressing the option key will allow the user to hold (HLD) that test sequence if measurements want to be taken. The exception is RU3 (ignitor).

Run Test Mode:

To enter Run Test Mode, scroll to run using the Menu key, then push the option key. The LED will flash run three times, then begin the test.

To exit the test mode, momentarily push the Menu key, cycle power to the furnace, or make a valid thermostat call for capacity or fan.

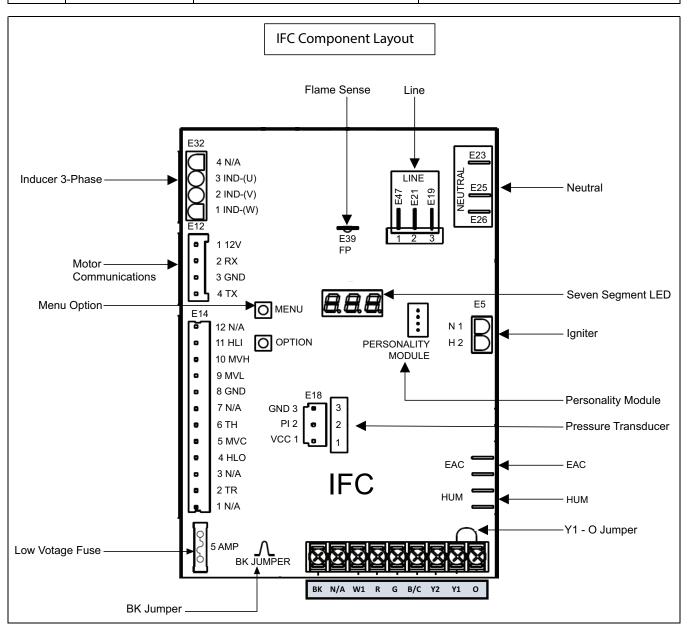
Sequence of Run Test Mode


- rU I − Turns the inducer on in 1st stage for 30 seconds
- r 山ヨ Turns the ignitor on for 10 seconds
- r 내 Turns the circulating blower on 1st stage compressor speed for 10 seconds
- ¬US Turns the circulating blower on 2nd stage compressor speed for 10 seconds
- r Ub − Turns the circulating blower on 1st stage gas heat speed for 10 seconds

The above sequence will repeat two more times unless the Run Test Mode is exited, see above

Important: The Run Test Mode does not test fire the furnace or bring the outdoor unit on. It is designed to allow the technician to observe each mode to ensure the IFC, inducer, and circulating blower are performing as intended.

Belly Band Location

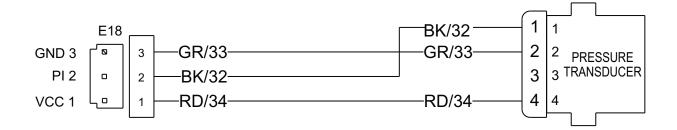

Distance from belly band to the front face of motor for minimum vibration

LED Fault Codes

E01		1	POSSIBLE CAUSE/ACTION
	Loss of IRQ	Internal IFC failure	Replace IFC
E2.1	Retries Exceeded (5 retries, 6 total)	Flame never sensed (5 retries, 6 total results in one hour lockout)	Gas valve not energized, flame sensor faulty, low manifold pressure
E2.2	Recycles Exceeded (9 recycles, 10 total)	Flame sensed and lost (9 recycles, 10 total results in one hour lockout)	Low manifold pressure, dirty burner system, weak flame sensor
E2.3	External Lockout	First stage gas valve not energized when it should be	Replace IFC
E2.4		HLO relay not energized when it should be	Replace IFC
E3.1	Pressure Transducer Error	Signal Not Present Less than 0.25VDC @ 5.0VDC supply for 2 secs. (RD - GND)	Verify transducer tubing is connected and connector is fully seated on the IFC Remove transducer from IFC and verify ~4.8VDC from VCC - GND Low supply voltage, replace IFC. Nominal supply voltage, replace transducer
E3.2		Signal Out of Bounds Greater than 4.25V @ 5.0V supply for 10 secs. (RD - GND)	Verify transducer tubing is connected and connector is fully seated on the IFC Remove transducer from IFC and verify ~4.8VDC from VCC - GND Nominal supply voltage, replace transducer
E3.3		Insufficient Pressure Inducer is unable to reach pressure setting at maximum speed after 10 seconds. (PI - GND)	Verify transducer tubing is connected and connector is fully seated on the IFC Remove transducer from IFC and verify ~4.8VDC from VCC - GND
E04	Open Limit Switch	A thermal limit has opened in the safety circuit	Primary, burner box, or reverse airflow limit tripped Primary Limit - Dirty filter, restricted airflow Burner Box Limit - High manifold pressure, clogged burner inlet, dirty burner system
E05	Flame Sense Error	Flame sensed when no flame should be present	Verify drip leg/sediment trap is installed. Remove gas valve and inspect for signs of debris. Clear debris of gas system and replace gas valve if necessary
E6.1	Reversed Polarity	Hot & neutral reversed	Triggered when Neutral - Ground voltage is greater than 50VAC
E6.2	Ground Error	Ground not detected	Triggered when Neutral - Ground voltage is greater than 20VAC but less than 50VAC
E7.1	External Cas Valva Error	1st Stage Gas Valve (MVL) is Energized when it should be Off	Verify 24VAC is not present on gas valve. Replace IFC
E7.2	External Gas Valve Error	Redundant Relay (HLO output) Energized when it should be Off	Verify 24VAC is not present on gas valve. Replace IFC
E08	Low Flame Sense	Flame current is low, but still strong enough to allow operation	Clean flame rod with steelwool only. Replace as necessary
E10	Inducer Communication Error	Inducer motor no communication response	Possibly caused by a communication failure between two microcontrollers. Replace IFC
		1st stage gas valve energized when it should not be	Verify all wiring is correct and intact. Replace IFC
E11	Internal Gas Valve Error	1st stage gas valve not energized when it should be	Verify all wiring is correct and intact. Replace IFC
		Redundant relay (HLO output) not energized when it should be. After 10 unsuccessful tries, E11 will populate and enter into a one hour lockout	Verify all wiring is correct and intact. Replace IFC
E12	Open Fuse	Low voltage fuse blown	Verify approved accessories are connected to xfmr power. Reconnect low voltage field wiring, wire by wire if necessary to eliminate components.

LED	ERROR	ERROR EXPLANATION	POSSIBLE CAUSE/ACTION
E13	PM Motor ID Error	PM motor information does not match the motor installed	Verify correct motor HP with Service Facts. Replacement motor is not approved
E14	Personality Module Missing	PM is not plugged in	Verify PM is fully seated, cycle power to unit
E15	Personality Module Memory Error	Internal PM error	Cycle power to unit. Replace PM
E17	Blower Communication Error on Motor	IFC Rx not detecting motor feedback	Verify wiring from IFC to motor paying close attention to bulkhead connectors and motor connectors behind bulkhead
E18	Blower Communication Error on IFC	IFC Tx not detecting IFC feedback	Remove 4 pin motor connector from IFC. If E17 populates, the IFC is good. Verify wiring from IFC to motor. If wiring is verified, replace motor

Table 10. Inducer Pressure Transducer


L8V1A040U3VS*			
Inducer Mode	Pressure (in/H20)	VDC Pins 2 & 3	
OFF	0	0.5	
Pre-Purge	- 1.3	1.8	
Light-Off	- 1.3	1.8	
Stabilization	- 1.4	1.9	
Run	- 1.75	2.25	

L8V1A060U3VS*			
Inducer Mode	Pressure (in/H20)	VDC Pins 2 & 3	
OFF	0	0.5	
Pre-Purge	- 1.6	0.1	
Light-Off	- 1.1	1.6	
Stabilization	- 1.3	1.8	
Run	- 1.6	2.1	

	L8V1B080U4VS*	
Inducer Mode	Pressure (in/H20)	VDC Pins 2 & 3
OFF	0	0.5
Pre-Purge	- 1.5	2
Light-Off	- 0.75	1.25
Stabilization	- 1	1.5
Run	- 1.68	2.18

L8V1C100U5VS*			
Inducer Mode	Pressure (in/H20)	VDC Pins 2 & 3	
OFF	0	0.5	
Pre-Purge	- 1.5	2	
Light-Off	- 0.9	1.4	
Stabilization	- 1.2	1.7	
Run	- 1.6	2.1	

Note: Source voltage = \sim 4.8 VDC with pressure transducer removed Pins 2 & 3.

Table 11. Pressure Transducer

E18 Source Voltage 5Vdc Pins 1-2 (GR-RD)				
Hot Header Pressure Inches W.C.	Transducer Signal Vdc Pins 1-3 (GR-BK @ E18)			
0.00	0.50			
0.10	0.60			
0.20	0.70			
0.30	0.80			
0.40	0.90			
0.50	1.00			
0.60	1.10			
0.70	1.20			
0.80	1.30			
0.90	1.40			
1.00	1.50			
1.10	1.60			
1.20	1.70			
1.30	1.80			
1.40	1.90			
1.50	2.00			
1.60	2.10			
1.70	2.20			
1.80	2.30			
1.90	2.40			
2.00	2.50			
2.10	2.60			
2.20	2.70			
2.30	2.80			
2.40	2.90			
2.50	3.00			
2.60	3.10			
2.70	3.20			
2.80	3.30			
2.90	3.40			
3.00	3.50			
3.10	3.60			
3.20	3.70			
3.30	3.80			
3.40	3.90			
3.50	4.00			
3.60	4.10			
3.70	4.20			
3.80	4.30			
3.90	4.40			
4.00	4.50			

Parts List

Figure 1. L8V1 Parts Exploded View

- 1. Furnace cabinet assembly
 - a. Blower deck
 - b. Panel loop interlock (door switch)
- 2. Blower assembly
 - a. Variable speed motor
 - b. Vortica blower housing
 - c. RAF Reverse airflow limit switches
- 3. Heat exchanger assembly
 - a. Burner tube insulation sleeves
 - b. Burner box insulation
 - c. Flue collector box
- 4. Inducer assembly
 - a. Combustion motor
 - b. Pressure transducer

- 5. Burner assembly
 - a. Ignitor
 - b. Flame sensor
 - c. Burner box limit
 - d. Orifice
 - e. J-tube
- 6. Control assembly
 - a. IFC Integrated Furnace Control
 - b. Transformer
 - c. Motor choke(B80)
 - d. Wire assemblies
- 7. Primary limit switch

About Trane and American Standard Heating and Air Conditioning Trane and American Standard create comfortable, energy efficient indoor environments for residential applications. F more information, please visit www.trane.com or www.americanstandardair.com.	or
Intertek	
The manufacturer has a policy of continuous data improvement and it reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.	